Math 3210 Tutorial 5

General Steps on Simplex methods:
(1) Find a starting BFS
(2) Determined entering variables (make sure that the new $\left.\begin{array}{l}\downarrow \\ \text { solution is better }\end{array}\right)$
(3) Determine learing variable (make care that the new
(4) move from one BFS \rightarrow next BF .

General Directions Example 1: Try to find a basic solution for the following system

$$
\begin{aligned}
& \operatorname{Max} 4 x_{1}-x_{2}=f\left(x_{1}, x_{2}\right)=f(x) \\
& \text { Subject to } \\
& x_{i} \leq 4 \\
& x_{2} \leq 6 \\
& x_{1}+x_{2} \leqslant 8 \\
& x_{1} \geqslant 0 \quad x_{2} \geq 0 \\
& x_{1}+s_{1} \quad 4 x_{1} \leq 4 \\
& x_{2}+s_{2} \leq 6 \\
& x_{1}+x_{2}+\quad s_{3} \leq 8 \\
& C=\binom{4}{-1} \quad h=\left(\begin{array}{l}
4 \\
6 \\
8
\end{array}\right) \\
& A=\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1
\end{array}\right) \quad \text { a }
\end{aligned}
$$

$f(x)=f\left(\vec{x}_{B}^{\prime}\right)+\vec{C}\left(\vec{x}-\vec{x}_{3}\right)$ When we go from one point
$\wedge>$ to the next.
regard as position vectors. We mow

$$
f(x)=f\left(x_{0}+x-x_{0}\right)
$$

chose the pare that

$$
=f\left(x_{0}\right)+f\left(x-x_{0}\right) .
$$ $\stackrel{\rightharpoonup}{c}$

$$
f(x)=\underbrace{f\left(x_{0}\right)}_{\text {Of } \frac{1}{f} \frac{1}{\text { solution }}}+C \cdot\left(x-x_{0}\right)
$$

When we go from one
basic solution to the other let innitially we have

$$
\begin{aligned}
& \begin{array}{ll}
f(x)=n_{1} \\
y=B^{-1} / t
\end{array} \\
& =\left(\begin{array}{c:cc}
I & \ldots \\
& \ldots
\end{array}\right) \\
& =\left(\begin{array}{llll}
y_{a_{1}} & y_{b_{2}} & \cdots & g_{b_{m}} \\
y_{b_{m_{1+1}}} & -y_{p_{a+h}}
\end{array}\right)
\end{aligned}
$$

Back to example:

$$
\left.\begin{array}{l}
C=\binom{4}{-1} \rightarrow C=\left(\begin{array}{l}
4 \\
-1 \\
0 \\
8 \\
8
\end{array}\right) \\
b=\left(\begin{array}{llll}
4 \\
6 \\
8
\end{array}\right) \quad A=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1
\end{array}\right) \\
1
\end{array} 10 \begin{array}{l}
0 \\
0
\end{array}\right)
$$

We have one basic solution

$$
x_{1}=\left(\begin{array}{l}
0 \\
0 \\
4 \\
0 \\
8
\end{array}\right)
$$

do some re arragement.

If $X_{B r}$ is leaving, $X_{B j}$ is entering

$$
\begin{aligned}
& C_{T}^{\top}\left(\vec{x}-\vec{x}_{1}\right)=\frac{x_{a_{r}}}{y_{r_{j}}}\left\{c_{j}-z_{j}\right\} \\
& \text { new } \\
& \text { comer where } z_{j}=c_{B} \cdot y_{B j}
\end{aligned}
$$

need to make sure
that $\left(c_{j}-2 j\right)$ is
maximised

Paler Potential variables to enter.

$$
\begin{aligned}
& X_{B_{4}^{\prime}} \quad X_{B_{5}} \\
& z_{B_{4}}=c^{B^{\prime}} \cdot y_{8_{4}} \quad z_{8^{\prime} 5}=c^{\theta^{\prime} \cdot} \cdot y_{B G} \\
& =0 \quad=\binom{0}{i} \cdot\binom{i}{i} \\
& C_{b_{4}}-Z_{b_{4}} \quad C_{b_{5}^{\prime}}-Z_{b_{9}} \\
& =4 \quad=-1
\end{aligned}
$$

x_{24} is entering. $\rightarrow x_{1}$ is entering

Final step: Move it from one basic solution to the other

$$
\left(\begin{array}{l}
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right) \rightarrow\left(\begin{array}{l}
x_{1} \\
x_{4} \\
x_{5}
\end{array}\right)
$$

Method:
Consider
$A \quad A X=b \quad\left(\begin{array}{cccc}1 & 0 & 7 & \text { 宿 } \\ 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)\left(\begin{array}{l}x_{1} \\ 0 \\ 0 \\ x_{4} \\ x_{5}\end{array}\right)=\left(\begin{array}{l}4 \\ 6 \\ 8\end{array}\right)$

$$
\Rightarrow\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{l}
4 \\
6 \\
8
\end{array}\right)
$$

Another Example on 3 by $\mathbf{3}$ system
Example 2:
Ex) Max $5 x_{1}-2 x_{2}+3 x_{3}=f\left(x_{1}, x_{2}, x_{2}\right)$
subject to

$$
\begin{gathered}
x_{1}+3 x_{2}+3 x_{3} \leq 甲 11 \\
x_{1}+4 x_{2}+3 x_{3} \leq q 9 \\
x_{1}+3 x_{2}+4 x_{3} \leq q \\
x_{1}, x_{2} i x_{4} \leq 0 \\
\left(\begin{array}{llllll}
1 & 3 & 3 & 1 & 0 & 0 \\
1 & 4 & 3 & 0 & 1 & 0 \\
1 & 3 & 4 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right)=\left(\begin{array}{c}
11 \\
9 \\
13
\end{array}\right)
\end{gathered}
$$

start with the origin. $\left(s_{1}, s_{2}, s_{2}\right)$ an burin

$$
x_{q_{1}}=x_{1}
$$

$$
x_{p_{2}}^{\prime}=z_{2}
$$

$$
x_{p_{2}}=x_{1}
$$

$$
x_{p_{5}}^{p_{s}^{r}}=x_{2}
$$

$$
\begin{aligned}
& C=\left(\begin{array}{l}
5 \\
-2 \\
\vdots \\
0 \\
0
\end{array}\right) \quad C_{R}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
\frac{5}{2} \\
3
\end{array}\right) \quad X_{B_{1}=}=\left(\begin{array}{c}
11 \\
9 \\
13
\end{array}\right)
\end{aligned}
$$

E ot a Basic collation: Then try seeing what new variable to putty

$$
\begin{aligned}
& C_{B}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
5 \\
\frac{2}{3}
\end{array}\right) \quad B=\left(\begin{array}{lll}
1 & 0 & 8 \\
0 & 1 & 8 \\
0 & 0 & 1
\end{array}\right) \quad B^{-1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad C_{B}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& Y=\xi^{-1} A=\left(\begin{array}{llll}
10 & 0 & 13 & 3 \\
0 & 0 & 1 & 4 \\
0 & 3 \\
0 & 1 & 1 & 3
\end{array}\right)
\end{aligned}
$$

Potential variables $X_{B_{4}}, X_{p_{9}}, X_{B_{6}}$

$$
\begin{aligned}
& Z_{B_{4}}=Z_{B_{5}}=Z_{B_{6}}=0 \quad C=\left(\begin{array}{l}
0 \\
0 \\
0 \\
\frac{\Sigma_{5}}{3}
\end{array}\right) \\
& \overline{C_{B_{4}}-Z_{B_{4}}=9} \\
& C_{P_{5}}-Z_{B_{5}}=0-2 \\
& C_{B_{6}}-Z_{6_{4}}=3
\end{aligned}
$$

determine which is leaving

$$
\forall_{B_{4}}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \quad x_{B_{1}}=\left(\begin{array}{l}
11 \\
a \\
13
\end{array}\right) \quad \text { minimise } \frac{x_{B_{r}}}{V_{b, 4}} \underset{\text { chose } x_{B_{2}} t_{0}}{\text { leave. }}
$$

(Easier) Way,

$$
11 A_{B_{1}}+9 A_{B_{2}}+13 A_{B_{3}}=\left(\begin{array}{l}
11 \\
a \\
13
\end{array}\right)_{1}-(2)
$$

need to re ploce $A n_{2}$ with $A w_{4}$,

$$
\begin{aligned}
& A_{n_{1}}, A_{n_{2}} A_{n_{3}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 5
\end{array}\right) \\
& A_{B_{4}}=A_{n_{1}}+A_{n_{2}}+A_{n_{3}} \\
& A_{n_{2}}=A_{B_{4}}-A_{n_{1}}-A_{n_{3}}
\end{aligned}
$$

Sub le into (z)

$$
2 A_{B_{1}}+9 A_{B_{4}}+4 A_{B_{3}}=\left(\begin{array}{l}
11 \\
1 \\
B
\end{array}\right)
$$

$$
\left.\begin{array}{l}
B^{2}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right) \quad B^{2-1}=\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right) \quad Y^{2}=\left(\begin{array}{ccccc}
10 & 0 & -1 & 0 & -1 \\
0 & 1 & 0 & 4 & 3 \\
0 & 0 & 1 & 1 & 1
\end{array}\right) \\
Z_{B_{4}^{2}}=C_{B_{1}^{2}} \cdot Y_{B_{4}}^{2}=20 \\
Z_{B_{5}}=- \\
Z_{B_{6}}^{2}=\cdots
\end{array}\right)
$$

We can also see that the solution we del.

$$
x_{1}=5 \quad x_{2}=x_{3}=0=6, x_{3}=0 \quad x_{i} \text { optimal point }
$$

is optimal.
Example 3: what happens when degenerating solution occurs?

$$
\begin{aligned}
& A=\left(\begin{array}{llll}
2 & 4 & 1 & 0 \\
1 & 3 & 0 & 1
\end{array}\right) \quad b=\binom{8}{6} \quad C=\binom{5}{-1} \quad C_{B}^{c}=\left(\begin{array}{c}
5 \\
-1 \\
0 \\
0
\end{array}\right) \\
& \left(\begin{array}{ll}
2 & 4 \\
1 & 3
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{8}{6} \\
& \binom{x_{1}}{x_{2}}=\binom{0}{2}
\end{aligned}
$$

$$
\begin{aligned}
& B=\left(\begin{array}{ll}
2 & 4 \\
1 & 3
\end{array}\right) \quad B^{-1}=\left(\begin{array}{cc}
1.5 & -2 \\
-0.5 & 1
\end{array}\right)
\end{aligned}
$$

put in S_{2}, take out x_{1}

$$
\begin{gathered}
\left(\begin{array}{l}
014 \\
1 \\
1
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{8}{0} \\
\zeta_{1}=0 \text { as well }
\end{gathered}
$$

We chose which variable to kick own by choir min $\left(\frac{X_{\text {ar }}}{Y_{i j}}\right)$

